Space/Time Analysis for Cybersecurity (STAC) Proposer's Day DARPA-BAA-14-60

Tim Fraser
Program Manager
Information Innovation Office (I2O)
DARPA

22 September, 2014

Past: Flawed Implementations of Algorithms

Exploitation trends evolve in response to defenses. Commodity systems now deploy mitigations for common implementation flaws.

Future: Flaws in the Algorithms Themselves

Program Focus: Algorithmic resource usage vulnerabilities.

Resource usage vulnerabilities have been reported in:

Future algorithmic flaws do not involve traditional implementation flaws, are not mitigated by traditional defenses, and thus require a different analysis.

Progress Can Be Made on Scale

Α

Analysis Scale vs. End-to-end Analysis Time

Chang and others (UT Austin) 2009

- Determine which loops are controlled by network input.
 Method: data-flow, control-flow analyses
- 2. Rank warnings by complexity.

 Method: structural heuristics

 Found vulnerabilities in:
 - Expat XML parser (12KLOC)
 - WU-FTPD (20KLOC)
- SQLite database engine (63KLOC) 82% false alarm rate.

Progress Can Be Made on Speed

Analysis Scale vs. End-to-end Analysis Time

B Gulwani & Zuleger (MSR, TU Vienna)

```
 \begin{array}{l} \underbrace{\text{Ex1(uint } n, \text{ bool[] } A)}_{i := 0;} \\ \text{while } (i < n) \\ j := i + 1; \\ \text{while } (j < n) \\ \text{if } (A[j]) \\ \text{ConsumeResource();} \\ j - - ; \\ n - - ; \\ j + + ; \\ i + + ; \end{array}
```

1. Extract logic that controls loops Method: abstract interpretation

$$\mathsf{Max}(0,\, n-j,\, n-i-2)\, \wedge\,\, i\geq 0\, \wedge\, j\geq 1$$

2. Compute bounds in terms of input Method: constraint solving

At most n visits to ConsumeResource()

Computed bounds for complex loops in .Net base-class libraries.

DARPA One Plausible Solution Strategy

Research question #1:

What paths exist between inputs and variables, secrets and outputs?

Research question #2:

How do inputs impact resource usage?

Metrics:

- Scale (size of largest analyzable program)
- Human analysis time (person-hours)
 - False alarms
 - Missed detections

Program Schedule and Structure

TA1 – Program Analysis Research & Development (R&D) Teams.

TA2 – Adversarial Challenge Teams.

TA3 – Experimentation Lead: Measure progress with engagements that challenge R&D teams to find space-time vulnerabilities planted in software.

Target software: Java bytecode. No source.

- [CHE10] Shuo Chen and others. "Side-Channel Leaks in Web Applications: a Reality Today, a Challenge Tomorrow," IEEE Symposium on Security and Privacy, 2010.
- [DUO12] Thai Duong and Julianno Rizzo. "The CRIME Attack," Ekoparty, 2012.
- [PAU12] Paul. "Leaking information with timing attacks on hashtables, part 1," http://gdtr.wordpress.com/2012/08/07/leaking-information-with-timing-attacks-on-hashtables-part-1/, 2012.
- [PRA13] Angelo Prado, Neal Harris, and Yoel Gluck. "SSL, Gone in 60 Seconds A BREACH beyond CRIME," Black Hat, 2013.
- [WAL11] Julian Walde and Alexander Klink, "Effective Denial of Service attacks against web application platforms," Chaos Communications Congress 28C3, 2011.